

NÚMEROS COMPLEXOS

- 1) Sendo $z = x + (x^2 4)i$, com $x \in \mathbb{R}$, então z é um número real se, e somente se:
- (A) x = 0
- (B) $x \neq 0$
- (C) $x = \pm 2$
- (D) $x \neq -2$ e $x \neq 2$
- (E) $x \ne 0$, $x \ne -2$ e $x \ne 2$
- 2) O conjugado de z = (2 + 3i)(5 2i) é:
- (A) 16 + 11i
- (B) 16 11i
- (C) 10 6i
- (D) 10 + 6i
- (E) 16i
- 3) O módulo de $\frac{i+\sqrt{3}}{\sqrt{3}-i}$ vale
- (A) 0
- (B) 1
- (c) $\sqrt{3}$
- (D) $-\frac{1}{2}$
- (E) $\frac{1}{4}$
- 4) Seja o número complexo z = 1 + i. O argumento de z^2 é:
- (A) 30°
- (B) 60°
- (C) 45°
- (D) 120°
- (E) 90°
- 5) Considere o número complexo $v = \frac{-1+i}{i}$, sendo $i^2 = -1$. O número complexo u, com módulo igual de **v** e

 i^2 = -1. O número complexo u, com módulo igual de ${\bf v}$ e argumento igual ao quádruplo do argumento de v, é:

- (A) $u = -\sqrt{2}$
- (B) $u = \sqrt{2} i$
- (C) $u = \sqrt{2}$
- (D) u = 2i
- (E) u = -2i
- 6) Um complexo z possui módulo igual a 2 e argumento
- $\frac{\pi}{3}$. Sendo $\overset{-}{z}$ o conjugado de z, a forma algébrica do

complexo $\overset{-}{z}$ é:

- (A) $1 i\sqrt{3}$
- (B) $\sqrt{3} i$
- (c) $\sqrt{3} + i$
- (D) $1 + \sqrt{3}i$
- (E) $2(\sqrt{3}-i)$

- 7) O número complexo $2\left(\cos\frac{11\pi}{6} + i.sen\frac{11\pi}{6}\right)$ escrito na forma algébrica a + bi é:
- (A) $2\sqrt{3} + i$
- (B) $-\sqrt{3} + 8$
- (C) $-\sqrt{3}-i$
- (D) $-2\sqrt{3}$ -
- (E) $\sqrt{3} i$
- 8) Se $z = 7\left(\cos\frac{\pi}{4} + i.sen\frac{\pi}{4}\right)$, então z^4 é igual a:
- (A) -2401
- (B) 2401
- (C) 2401 + i
- (D) -2401 + i
- (E) -2401. i
- 9) O valor de $\left(\sqrt{3}+i\right)^6$ é:
- (A) 64-64i
- (B) -64i
- (C) 64i =
- (D) 64
- (E) -64
- 10) Se $z_1 = 3 + 2i$ e $z_2 = 4 i$, assinale a única alternativa **falsa**:
- (A) $z_1 + z_2 = 7 + i$
- (B) $z_2 z_1 = 1 3i$
- (C) $z_1 \cdot z_2 = 14 + 5i$
- (D) $|z_1|^2 = 13$
- (E) $\frac{z_1}{z_2} = \frac{3}{4} 2i$
- 11) O módulo do complexo $\overline{1+2i}+i(1-i)-\frac{2}{1+i}$ é

igual a:

- (A) $\sqrt{2}$
- (B) $\sqrt{3}$
- (c) $\sqrt{5}$
- (D) 1
- (E) 2
- 12) Seja o número complexo z = i 101 + i 102 + i 103 + i 104 + i 105 + i 106 .Calculando-se z 2 , obtém-se:
- (A) -2i
- (B) 2i
- (C) -1 + i
- (D) 2 2i
- (E) -6 + 6i

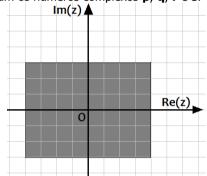
LISTA 24 = NÚMEROS COMPLEXOS

- 13) Se o número complexo z = a + bi tal que $z^2 = \left(\overline{z}\right)^2$, então é verdade que
- (A) $a = 0 e b \neq 0$
- (B) a = 0 ou b = 0
- (C) $a \ne 0$ e b = 0
- (D) $a \neq 0$ ou $b \neq 0$
- (E) a \neq 0 e b \neq 0
- 14) Para que (5 2i)(k + 3i) seja um número real, o valor de k deverá ser
- (A) $\frac{2}{15}$
- (B) $-\frac{2}{15}$
- (C) $\frac{15}{2}$
- (D) $-\frac{15}{2}$
- (E) 0
- 15) Sabendo-se que o complexo z = a + bi satisfaz a expressão iz + 2z = 2i 11, então z^2 é igual a:
- (A) 16 9i
- (B) 17 24i
- (C) 25 24i
- (D) 25 + 24i
- (E) 7 24i
- 16) Considere um número complexo **z** tal que o seu módulo é 10 e a soma dele com o seu conjugado é 16. Sabendo que o afixo de **z** pertence ao 4º quadrante, pode-se afirmar que **z** é igual a:
- (A) 6 + 8i
- (B) 8 + 6i
- (C) 10
- (D) 8 6i
- (E) 6 8i
- 17) A representação cartesiana dos números complexos 1+2i, -2+i e -1-2i são vértices de um quadrado. O quarto vértice desse quadrado corresponde a:
- (A) 1 i
- (B) 2 i
- (C) 1 + i
- (D) 1 2i
- (E) -2 2i
- 18) Considerando-se que os pontos A, B e C são os afixos dos números complexos $z_1=2-i$, $z_2=2+i$ e $z_3=-4+4i$, pode-se afirmar que a área do triângulo ABC é igual a:
- (A) 4 u.a.
- (B) 6 u.a.
- (C) 8 u.a.
- (D) 10 u.a.
- (E) 12 u.a.

19) Se $\mathbf{a} \in \mathbf{b}$ são números reais tais que o número complexo a = bi

$$z = \frac{a - bi}{4 - 2i}$$
 tem módulo igual a 1, então:

- (A) a = 2b
- (B) a b = 2
- (C) a + b = 6
- (D) $a^2 b^2 = 12$
- (E) $a^2 + b^2 = 20$
- 20) O produto (x + yi)(2 + 3i) é um número real quando x e y são reais e:
- (A) x 3y = 0
- (B) 2y 3x = 0
- (C) 2x + 2y = 0
- (D) 2x + 3y = 0
- (E) 3x + 2y = 0
- 21) Os vértices do retângulo sombreado da figura abaixo representam os números complexos $\bf p, q, r e s$.



Pode-se afirmar que $\mathbf{p} + \mathbf{q} + \mathbf{r} + \mathbf{s}$ é o número complexo:

- (A) i
- (B) i
- (C) 1
- (D) 0
- (E) 1 + i
- 22) Sobre o número complexo $(1-i)^{1000}$, podemos afirmar que:
- (A) é igual a zero
- (B) é um número imaginário puro
- (C) é um número real negativo
- (D) tem módulo igual a 1
- (E) é um número real positivo
- 23) A potência ($\cos 60^{\circ} + i.sen 60^{\circ}$)⁶⁰¹ é igual a:

(A)
$$\frac{1}{2}(1-i\sqrt{3})$$

(B)
$$\frac{1}{2}(-1+i\sqrt{3})$$

(C)
$$\frac{1}{2}(1+i\sqrt{3})$$

(D)
$$\frac{1}{2}(\sqrt{3}+i)$$

(E)
$$\frac{1}{2}(\sqrt{3}-i)$$

LISTA 24 = NÚMEROS COMPLEXOS

números $z_1 = 2\left(\cos\frac{\pi}{4} + i.sen\frac{\pi}{4}\right)$ e $z_2 = 5\left(\cos\frac{\pi}{3} + i.sen\frac{\pi}{3}\right)$

(A)
$$10 \left(\cos \frac{\pi^2}{12} + i.sen \frac{\pi^2}{12} \right)$$

(B)
$$10\left(\cos\frac{\pi}{12} + i.sen\frac{\pi}{12}\right)$$

(C)
$$10\left(\cos\frac{5\pi}{12} + i.sen\frac{5\pi}{12}\right)$$

(D)
$$10\left(\cos\frac{7\pi}{12} + i.sen\frac{7\pi}{12}\right)$$

(E)
$$10\left(\cos\frac{3\pi}{4} + i.sen\frac{3\pi}{4}\right)$$

25) Se w = $\cos 30^{\circ}$ + i.sen 30° e z = $\cos 120^{\circ}$ + i.sen 120° então,

(A)
$$w^2 + z^2 = 0$$

(B)
$$w + z = 0$$

(C)
$$w^2 - z^2 = 0$$

(D) $w - z = 0$

(D)
$$w - z = 0$$

(E)
$$w^4 + z^4 = 0$$

26) Simplificando $y = \frac{i^7 - i^{-7}}{2i}$, obtém-se

(A)
$$-1$$

(B)
$$-\frac{1}{2}$$

(D)
$$\frac{1}{2}$$

(E) 1

 $z_1 = 2(\cos 60^\circ + i.sen 60^\circ)$ por Multiplicando 27) $z_2 = 3(\cos 30^\circ + i.sen 30^\circ)$, obtemos

- (A) 6
- (B) 6
- (C) 6.sen 90°
- (D) 6i
- (E) 6.cos 90°

28) Sendo Z um número complexo com $arg(z) = \theta$, o módulo e o argumento do produto Zi, onde i representa a unidade imaginária são, respectivamente, iguais a

(A)
$$\frac{|Z|}{2}$$
 e θ

(B)
$$|Z| = \theta + \frac{\pi}{2}$$

(C)
$$\frac{|Z|}{2}$$
 e θ - $\frac{\pi}{2}$

(D)
$$|Z|$$
 e θ

(E)
$$|Z|$$
 e - θ

29) Dados os números complexos $Z_1 = \sqrt{7} + \sqrt{2}i$, $Z_2 = 1 + 2\sqrt{2}i$ e $Z_3 = 3i$. A alternativa correta é

(A) Z_1 e Z_2 têm o mesmo conjugado.

(B) a parte real de Z_1 é menor que a parte real de Z_2 .

(C) a soma de Z_1 com Z_3 é um número real.

(D) a parte imaginária de Z₃ é zero.

(E) Z_1 , Z_2 e Z_3 têm módulos iguais.

30) Dado o número complexo $z = 2\left(\cos\frac{\pi}{4} + i.sen\frac{\pi}{4}\right)$,

o valor de z^5 é igual a

(A)
$$-4\sqrt{2} + 4\sqrt{2}i$$

(B)
$$4\sqrt{2} + 4\sqrt{2}i$$

(C)
$$-16\sqrt{2} - 16\sqrt{2}i$$

(D)
$$-16\sqrt{2} + 16\sqrt{2}i$$

(E)
$$16\sqrt{2} - 16\sqrt{2}i$$

		Lista
	Gabarito	24
[01] C	[11] D	[21] D
[02] B]	[12] A)	[22] E]
(03) B	[13] B	[23] C
04 E	$[14]\mathbf{C}$	24 D
05 A	[15] E	[25] A
06 A	16 D	26 A
07) E	[17] B	[27] D
08 A	[18] B	28 B
09 E	[19] E	29) E
10 E	20 E	30 C

As resoluções das questões dessa e demais listas do Programa 40 estão gravadas em vídeos explicativos e detalhados.

Adquira o pacote com os vídeos e enriqueça a sua preparação em Matemática.

www.projairo.com