

LISTA 26 – MATRIZES E DETERMINANTES

- 1) Uma matriz **A** quadrada de ordem 3, é definida por $a_{ii}=i-j^2+1$. O valor de seu elemento a_{23} é
- (A) -6
- (B) -3
- (C) 3
- (D) 6
- (E) impossível calcular
- 02) Uma matriz $A=(a_{ij})$, quadrada de ordem **n**, é tal que $a_{ij}=0$ sempre que $i\times j>i+j$. Caso contrário, $a_{ij}=1$. A soma de todos os elementos da matriz é (considerar **n** > **1**)
- (A) 2n
- (B) 2n 1
- (C) 2n + 1
- (D) n + 1
- (E) n
- 03) A matriz transposta da matriz 2 x 2, definida por $\begin{cases} a_{ij}=i-2j,\ i\neq j\\ a_{ii}=2i-j,\ i=j \end{cases}$
- (A) $\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$
- (B) $\begin{bmatrix} 1 & -3 \\ 0 & 2 \end{bmatrix}$
- (C) $\begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix}$
- (D) $\begin{bmatrix} 0 & 2 \\ 1 & -3 \end{bmatrix}$
- (E) $\begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$
- 04) Se a matriz A tem ${\bf n}-{\bf m}$ linhas e 5 colunas, a matriz B tem ${\bf n}+{\bf m}$ linhas e 1 coluna, A pode multiplicar B e B pode multiplicar A, então ${\bf n}$ e ${\bf m}$ são, respectivamente, iguais a
- (A) 3 e 2
- (B) 2 e 1
- (C) 3 e 3

- (D) 4 e 3
- (E) 5 e 3
- 05) A matriz quadrada $A = (a_{ii})$ de 3ª ordem, definida por

$$a_{ij} = \begin{cases} -i^2 + j, & se \ i = j \\ 1, & se \ i \neq j \end{cases}$$
 , o **detA** vale

- (A) 126
- (B) 90
- (C) 26
- (D) 16
- (E) 10

06) Dadas as matrizes

$$A = \begin{bmatrix} 5 & 2 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -2 \\ 0 & 1 \end{bmatrix}$ e $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tais

que 2A - X = B, então o determinante de X é

- (A) 4
- (B) 12
- (C) 20
- (D) 26
- (E) 30
- 07) Dadas as matrizes $A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \\ 3 & 4 \end{bmatrix}$ e
- $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \end{bmatrix}$, a matriz resultante de $\mathbf{A^t}$ $\mathbf{2B}$ deve ser
- (A) $\begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 4 \end{bmatrix}$
- (B) $\begin{bmatrix} 0 & 1 \\ -1 & 2 \\ -1 & 4 \end{bmatrix}$
- (c) $\begin{bmatrix} 1 & -2 & 0 \\ -1 & 2 & -4 \end{bmatrix}$
- (D) $\begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & -1 \end{bmatrix}$
- (E) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$
- 08) Dadas as matrizes

$$A = \begin{bmatrix} \frac{1}{27} & b^2 \\ \log_2 \frac{1}{16} & 27 \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} 3^a & 25 \\ c & a^3 \end{bmatrix}$$

Para que as matrizes A e B sejam iguais, deve-se ter

- (A) a = -3, b = 5 e c = -4
- (B) a = 5, b = -4 e c = -3
- (C) a = 3, b = 5 e c = 4
- (D) a = -3, b = 5 e c = 4
- (E) a = b = c = -3
- 09) Se A, B e C são matrizes de ordens respectivamente iguais a 2 x 3, 3 x 4 e 4 x 2, então (A . (B . C)) 2 tem ordem
- (A) 2
- (B) 3
- (C)4
- (D) 6
- (E) 12

LISTA 26 = MATRIZES E DETERMINANTES

10) Se
$$X = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$$
, $Y = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$, $P = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$

e
$$Q = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$$
, então (X - Y)(P + Q) é igual a

- (A)[7]
- (B) [8]
- (C) [2 1 4]
- $\lceil 2 \rceil$ (D) 4
- (E) 4
- 11) Dadas as matrizes $A = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$, o determinante da matriz AB é
- (A) -7 (B) -5 (C) 3

- (D) 4
- (E) 5
- 12) O valor de x na equação matricial

$$\begin{bmatrix} 2x + y \\ x + 3y \end{bmatrix} = \begin{bmatrix} -2 \\ 14 \end{bmatrix} \quad \epsilon$$

- (A) -7
- (B) -6
- (C) -5
- (D) -4 (E) -3
- 13) Sendo **I** a matriz identidade e $M = \begin{bmatrix} 3 & -2 \\ -4 & 3 \end{bmatrix}$, então a matriz X, tal que XM = I é

14) A equação
$$\begin{vmatrix} 2 & 1 & 3 \\ 4 & -1 & n-1 \\ n & 0 & n \end{vmatrix} = 12 \text{ tem como conjunto}$$

verdade

- $(A) \{-6, 2\}$
- (B) {-2, 6}
- (C) {2, 6}
- (D) {-6, 6}
- (E) {-2, 2}

15) Se
$$\begin{vmatrix} a & b & c \\ 2 & 0 & 1 \\ 1 & 0 & 4 \end{vmatrix} = 2 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix}$$
, então

- (A) a, b, c são números arbitrários.
- (B) a, b, c são números bem determinados.
- (C) b = 2 e a, c são números arbitrários.
- (D) necessariamente a = 0, b = -2 e c = 0.
- (E) b = -2 e a, c são números arbitrários.

16) O determinante da matriz
$$A = \begin{bmatrix} 2 & 3 & 1 & -1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$
 é

- (A) 0
- (B) 8
- (C) -8
- (D) 7 (E) -7

devemos ter

- (A) $k \neq 0$
- $(B) k \neq -4$
- (C) k = -4
- (D) k = 6
- (E) $k \neq 6$

18) O valor de **x** na equação
$$\begin{vmatrix} x & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 6 & x \end{vmatrix} = 10$$
 é

- (A) -3
- (B) 2
- (C) 3
- (D) 6
- (E)9

LISTA 26 = MATRIZES E DETERMINANTES

- 19) Sendo \mathbf{x} e \mathbf{y} os dois ângulos agudos de um triângulo retângulo, o determinante $\begin{vmatrix} sen x & -\cos x \\ sen y & \cos y \end{vmatrix}$ é igual a
- (A) 2.sen x . cos y
- (B) sen x . cos y sen y . cos x
- (C) $sen^2 x + cos^2 y$
- (D) 0
- (E) 1
- 20) Se $\begin{vmatrix} a & b \\ 1 & 1 \end{vmatrix} = 2$, então $\begin{vmatrix} 3a+1 & 3b+1 \\ 2 & 2 \end{vmatrix}$ vale
- (A) 3
- (B) 4
- (C) 6
- (D) 8
- (E) 12
- 21) A matriz $A = \begin{bmatrix} x & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$ é tal que
- $\det(A^4) = \frac{2}{x}$. O valor de **x** é
- (A) $\frac{1}{32}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{5}$
- (D) 5
- (E) 32
- 22) Se $\begin{vmatrix} 1 & 2 & 3 \\ 6 & 9 & 12 \\ x & y & z \end{vmatrix} = -12$, então $\begin{vmatrix} x & y & z \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{vmatrix}$ vale
- (A) -4
- (B) $-\frac{4}{3}$
- (c) $\frac{4}{3}$
- (D) 4
- (E) 12

23) O valor de **x** na equação
$$\begin{vmatrix} x & 0 & 0 & 0 \\ 1 & x & 1 & 2 \\ 2 & 0 & x & 3 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 16 \text{ \'e}$$

- (A) 2
- (B) -2
- (C) 3
- (D) -3
- (E) 0

24) Se
$$\begin{vmatrix} a & a & a \\ 1 & a & b \\ 1 & 1 & a \end{vmatrix} = 2$$
, então $\begin{vmatrix} a & a & a \\ 2 & 2a & 2b \\ 0 & 1-a & a-b \end{vmatrix}$ é

- (A) 0
- (B) 1
- (C) 2 (D) 3
- (E) 4

25) Para que o determinante da matriz
$$A = \begin{bmatrix} a & 1 & 0 \\ -3 & -1 & 1 \\ b & 2 & a \end{bmatrix}$$
 seja nulo, o valor de **b** deve ser

- (A) a(a + 1)
- (B) a²
- (C) 3a
- (D) $a^2 a$
- (E) $a^2 + 1$

26) O determinante da matriz
$$\begin{bmatrix} \sec x & \tan x \\ \tan x & \sec x \end{bmatrix}$$
 vale

- (A) 0
- (B) -1
- (C) 1
- (D) -2
- (E) 2

27) A inversa da matriz
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 é

(A)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$

(E)
$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

LISTA 26 = MATRIZES E DETERMINANTES

28) A soma de todos os elementos da matriz inversa da

matriz
$$\begin{bmatrix} 4 & 2 \\ 3 & 2 \end{bmatrix}$$
 é

- (A) 1
- (B) 0
- (C) 0,5
- (D) 2
- (E) -2
- 29) O determinante de uma matriz quadrada é 25. Por quanto se deve multiplicar os elementos da primeira linha da matriz para que o valor do determinante desta nova matriz seja igual a 5?
- (A) $\frac{1}{5}$
- (B) $\frac{1}{4}$
- (C) $\frac{1}{3}$
- (D) 5
- (E) 25

30) Se
$$\begin{vmatrix} a & a & a \\ 5 & a & 2 \\ a & 1 & a \end{vmatrix} = 0$$
 e a \neq 0, então $\begin{vmatrix} -a & -a & -a \\ 5 & 2a & 2 \\ 1 & 1 & \frac{a}{2} \end{vmatrix}$

vale

- (A) $-\frac{3}{2}$
- (B) $\frac{5}{2}$
- (C) $-\frac{21}{2}$
- (D) -3
- (E) zero

	Gabarito	Lista 26
01 A	11 E	21 B
02 A	[12] D	[22] D
03 A	[13] E	[23] A
04 A	[14] B	24 E
05 E	[15] E	[25] D
06 C	[16] A	26 C
07 A	[17] E	27 A
08 A	[18] C	28 C
09 A	[19] E	29 A
10 A	20 E	30 A

As resoluções das questões dessa e demais listas do Programa 40 estão gravadas em vídeos explicativos e detalhados.

Adquira o pacote com os vídeos e enriqueça a sua preparação em Matemática.

www.projairo.com