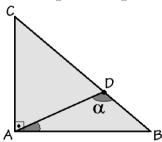

TRIGONOMETRIA

1) (IFSUL 12) Um terreno tem a forma de um triângulo isósceles, conforme figura ao lado, no qual, cada lado congruente mede 10 km e o ângulo adjacente à base mede 75°.


Nessas condições, a área desse terreno é de a)25km²

- b) $100\sqrt{3} \, \text{km}^2$
- c) $25\sqrt{3} \, \text{km}^2$
- d)100 km²
- 2) No triângulo abaixo, $a = 5\sqrt{2}$ cm, $A = 30^{\circ}$ e $B = 45^{\circ}$.

A medida do lado b é

- a) 20 cm.
- b) 5 cm.
- c) $5\sqrt{6}$ cm.
- d) 10 cm.
- e) $10\sqrt{3}$.
- 3) Considere o triângulo retângulo abaixo:

Sabendo-se que $\alpha=120^{\circ}$, AB = AC = 1 cm, então AD é igual, em cm, a

- a) $\frac{\sqrt{6}}{3}$.
- b) $\frac{\sqrt{3}}{3}$
- c) $\frac{2}{\sqrt{3}}$.
- d) $\frac{\sqrt{6}}{2}$
- e) $\sqrt{3}$.

- 4) As diagonais de um retângulo medem 20 (cada uma) e formam um ângulo de 60° . A área deste retângulo é
- a) 100.
- b) 200
- c) $50\sqrt{3}$.
- d) $100\sqrt{3}$.
- e) $200\sqrt{3}$.
- 5) A expressão sen 1500° é igual a
- a) sen 60°.
- b) sen 30°.
- c) sen 60°.
- d) sen 30°.
- e) sen 15°.
- 6) Se y = $\cos 2280^{\circ}$, então **y** é igual a
- a) $-\cos 12^{\circ}$.
- b) $-\cos 30^{\circ}$.
- $c) \cos 60^{\circ}$.
- d) cos 12°.
- e) cos 60°.
- 7) O valor numérico da expressão $\frac{sen 330^o + \cos 90^o}{2.tg \ 225^o} \ \ \acute{\rm e}$
- a) $-\frac{3}{4}$.
- b) $-\frac{\sqrt{3}}{2}$
- c) $-\frac{1}{4}$.
- d) $\frac{\sqrt{2}}{2}$.
- e) $\frac{1}{4}$.

8) Sendo $x = \frac{3\pi}{2}$, então o valor numérico da expressão

$$y = \frac{\operatorname{sen} x + \operatorname{cotg}\left(\frac{x}{2}\right) - \operatorname{cos}(2x)}{\operatorname{tg}\left(\frac{x}{2}\right) \cdot \operatorname{cosec} x + \operatorname{sec}(4x)} \quad \text{\'e}$$

- a) 1.
- b) 0.
- c) $-\frac{3}{2}$.
- e) 1.
- 9) O valor de (cos 1080° sen 720°) . cos 1125°
- a) 1.

- e) zero.
- 10) O valor da expressão cos (-60°) + sen (-30°) é
- a) 0.
- b) 1.
- c) 2.
- d) 3.
- e) 4.
- 11) A expressão $\frac{\sec x \cos x}{\csc x \sec x}$ é equivalente a
- a) $\sec^3 x$.
- c) $tg^3 x$.
- d) $sen^2 x$.
- e) $\sec^2 x$.

- 12) Simplificando a expressão obtém-se
- a) $tg^2 x$.
- b) $\cot^2 x$.
- c) $\sec x$.
- d) $\cos x$.
- e) $\cos^2 x$.
- 13) Para todo $x \in \mathbb{R}$, $\operatorname{sen}^4 x + \cos^4 x + 2 \cdot \operatorname{sen}^2 x \cdot \cos^2 x$ é igual a
- a) 2. b) 1.
- c) 0.
- d) 1.
- e) 2.
- 14) Para todo x real, o valor da expressão $\frac{1}{1+tg^2x} + \frac{1}{1+\cot^2 x} \quad \text{\'e igual a}$
- a) 1.
- b) 2.
- c) $2 + tg^2 x + \cot x^2$.
- d) $\sec^2 x + \csc^2 x$
- 15) Se sen x . $\cos x = a$, então (sen x $\cos x$)² é igual a
- a) 1 2a
- b) 1 + 2a
- c) 2a
- $d) a^2$
- e) 1
- 16) A expressão sen(x+y) + sen(x-y) é igual
- a) $-2 \cdot sen x \cdot cos y$.
- b) $2 \cdot sen x \cdot \cos y$.
- c) $2 \cdot sen x \cdot cos y + 2 \cdot sen y \cdot cos x$
- d) $2 \cdot sen y \cdot cos x 2 \cdot sen x \cdot cos y$
- e) $2 \cdot sen x \cdot cos y 2 \cdot sen y \cdot cos x$


- 17) Simplificando-se a expressão $\cos(180^{\circ} x) 5 \cdot sen(270^{\circ} + x) + 4 \cdot \cos(180^{\circ} + x)$, obtém-se:
- a) $3 \cdot \cos x 5 \cdot \sin x$.
- b) $\cos x$.
- c) 0.
- d) -sen x.
- e) $-\cos x$.
- 18) Sendo $\cos x = -\frac{3}{4}$ e x pertencente ao segundo quadrante, o valor numérico da expressão $\cos (\pi + x) + sen x$ é
- a) $\frac{\sqrt{7}}{4}$.
- b) $\frac{3+\sqrt{7}}{4}$.
- c) $\frac{7}{4}$.
- d) $\frac{1}{4}$.
- e) 2.
- 19) Se $\cos x + \sin x = y$, então $\sin 2x$ é igual a
- a) y + 1
- b) y 1.
- c) 1 y.
- d) $1 y^2$.
- e) $y^2 1$.
- 20) Se $sen x + cos x = \frac{1}{\sqrt{3}}$, de sen 2x é:
- a) $-\frac{2}{3}$.
- b) $-\frac{1}{3}$.
- c) $\frac{1}{3}$.
- d) $\frac{2}{3}$.
- e) 1.

- 21) Se tg a = 2, então tg 2a vale:
- a) $\frac{4}{3}$.
- b) $\frac{3}{4}$.
- c) $-\frac{4}{3}$
- d) 4.
- e) $\frac{1}{4}$.
- 22) (UFRGS 16) Considere o pentágono regular de lado 1 e duas de suas diagonais, conforme representado na figura abaixo.

A área do polígono sombreado é

- (A) $\frac{sen 36^{\circ}}{2}$
- (B) $\frac{sen72^{\circ}}{2}$
- (C) $\frac{sen72^{\circ}}{3}$
- (D) sen 36°.
- (E) $sen 72^{\circ}$.
- 23) (UFRGS 15) Considere o pentágono regular de lado 2 e duas de suas diagonais, conforme representado na figura abaixo.

A área do quadrilátero ABCD é

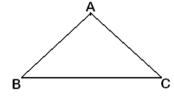
- (A) sen 72°.
- (B) sen 108°.
- (C) 2sen 72°.
- (D) 4sen 72°.
- (E) 4sen 12°.
 - **OBS.:** (Essa questão foi anulada por apresentar duas alternativas corretas: D e E)

24)) (UFRGS 13) Os lados de um losango medem 4 e um dos seus ângulos 30°. A medida da diagonal menor do losango é

a)
$$2\sqrt{2-\sqrt{3}}$$

$$b)\sqrt{2+\sqrt{3}}$$

$$c)4\sqrt{2-\sqrt{3}}$$


$$d)2\sqrt{2+\sqrt{3}}$$

$$e$$
) $4\sqrt{2+\sqrt{3}}$

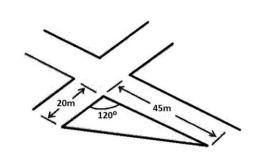
25) No triângulo representado na figura abaixo, AB e AC têm a mesma medida, e a altura relativa ao lado BC é igual a $\frac{2}{3}$ da medida de BC.

Com base nesses dados, o cosseno do ângulo CAB é

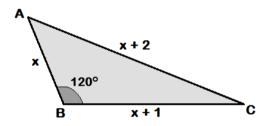
- a) $\frac{7}{25}$
- b) $\frac{7}{10}$

e)
$$\frac{5}{6}$$

c) $\frac{4}{5}$


26) As medidas dos lados de um triângulo são proporcionais a 2, 2 e 1. Os cossenos de seus ângulos internos são, portanto,

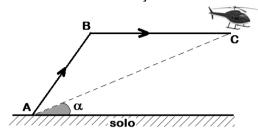
- a) $\frac{1}{8}, \frac{1}{8}, \frac{1}{2}$
- b) $\frac{1}{4}, \frac{1}{4}, \frac{1}{8}$
- c) $\frac{1}{4}, \frac{1}{4}, \frac{7}{8}$
- d) $\frac{1}{2}, \frac{1}{2}, \frac{1}{4}$
- e) $\frac{1}{2}, \frac{1}{2}, \frac{7}{8}$

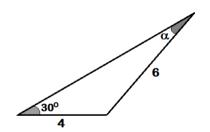

27) (UFRGS 07) Numa esquina cujas as ruas se cruzam, formando um ângulo de 120°, está situado um terreno triangular com frentes de 20m e 45m para essas ruas, conforme representado na figura abaixo:

A área desse terreno, em m², é:

- a) 225
- b) 225√2
- c) 225√3
- d) 450√2
- e) 450√3

28) O valor de x no triângulo ABC é


- a) $\frac{2}{3}$.
- b) $\frac{1}{3}$.
- c) 2.
- d) $\frac{3}{2}$.
- e) $\frac{1}{4}$.


29) (UFRGS) A figura abaixo representa a trajetória ABC de um helicóptero que percorreu 12km em AB, 14km em BC, paralelamente ao solo, ficando distante 20km de A.

O cosseno da inclinação a é

- a) $\frac{1}{2}$
- b) $\frac{\sqrt{2}}{2}$
- c) $\frac{\sqrt{3}}{2}$.
- d) $\frac{59}{70}$.
- e) $\frac{113}{140}$.

30) (UFRGS) No triângulo da figura, sen a vale

- a) 0,7.
- b) 0,666....
- c) 0,5.
- d) 0,333....
- e) 0,3.

	<u>Gabarito</u>	Lista 15
01 A	11 C	21 C
[02] D	[12] B	[22] A
(03) A	[13] D	23 D/E
(04) D	[14] A	[24] C
(05) C	[15] A	[25] A
(06) C	[16] B	[26] C
(07) C	[17] C	[27] C
(08) D	[18] B	[28] D
(09) C	[19] E	[29] E
[10] A	[20] A	(30 D)

As resoluções das questões dessa e demais listas do Programa 40 estão gravadas em vídeos explicativos e detalhados.

Adquira o pacote com os vídeos e enriqueça a sua preparação em Matemática.

www.projairo.com

TRIGONOMETRIA GERAL